The open spaces, the open grasslands. Nothing could be better. |
Cynodon dactylon in Peru |
- Efficient dispersal,
- Rapid population growth,
- Environmental flexibility
- Flexible growth forms and phenotypic plasticity
- The ability to transform environments to benefit themselves
The deadly spines of Cenchrus sp |
The sticky awns of Oplismenus undulatifolius helps in its dispersaL |
Bromus tectorum can flower within 5 weeks of germination |
Muhlenbergia capillaris is a salt tolerant dune grass |
Grasses have evolved a variety of growth forms that allow them to adapt to almost any situation or event, whether it be (a) continuous defoliation, such as by herbivores, (b) periodic defoliation, such as in seasonal climates, or (c) competition against other plants such as in forests.
In terms of vertical reach, most grasses are low lying organisms, but some species are tall, and form towering grasslands that reach high above the height of a man (e.g. Saccharum spontaneum grasslands). Bamboos are even taller, and their woody stems allow them to reach the height of mature trees in shaded forests.
In terms of horizontal spread, some grasses are bunch grasses that form tussocks, while others spread horizontally via stolons (above ground horizontal shoots) or rhizomes (below ground horizontal shoots) to form (for example) the typical lawns. This type of growth is controlled mainly by whether the species has intravaginal innovation (new shoots originate from axillary buds within the leaf sheaths) or extravaginal innovation (new shoots grow from axillary buds outside the leaf sheaths). In the latter case, the result is the ability of the grass to spread horizontally and blanket an entire area.
The vast majority of grasses also exhibit hemicryptophyte growth, which means that their buds are at or near the soil surface. This is one of the key mechanisms that allows grasses to withstand repeated defoliation via grazing or fire, and thus create climax communities that demonstrate an alternative biome state. This trait also means grasses do not necessarily need to maintain above ground structures during periods of extreme stress, such as droughts and cold, and it is the common reason that people assume grasses are so successful.
Bamboo sp (probably Bambusa vulgaris) |
5. Transformation of Environments
The ability of members of the Poaceae to significantly transform their environment is perhaps the primary key to their success. By changing their surroundings, grasses create a hostile environment for other plants (including trees and shrubs) that may usurp their dominance, and even relegate them to minor components of the biota.
The way grasses transform the environment is rooted in their makeup. The reproductive fecundity of the grasses allows them to exist in numberless hordes, and their growth forms enable them to blanket entire habitats in contiguous swards, denying food, water and sunlight to competing plants. Their enormous populations, enabled via wind pollination, also allows them to use biotic feedback mechanisms that utilize fire and herbivore grazing to transform closed canopy forests into grasslands, and later maintain this alternative climax state.
African Tropical Grassland (Savanna), by Gossipguy) |
All the factors above combine to give to the Poaceae an invasive and aggressive quality that is perhaps unmatched in the plant kingdom. It allowed the grasses to range far and wide, colonizing all four corners of the world, and transforming vast lands into the wide open spaces that we see today.
LITERATURE CITED
Beauchamp, Vanessa B.; Koontz, Stephanie M.; Suss, Christine; Hawkins, Chad; Kyde, Kerrie L.; Schnase, John L. (2013). "An introduction to Oplismenus undulatifolius(Ard.) Roem. & Schult. (wavyleaf basketgrass), a recent invader in Mid-Atlantic forest understories". The Journal of the Torrey Botanical Society. 140 (4): 391–413.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I. & Papale, D. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329,
834–838
Bennett TH, Flowers TJ, Bromham L. Repeated evolution of salt-tolerance in grasses. Biol Lett. 2013;9:20130029-20130029
Cope, T., Gray, A. J., Tebbs, M. & Ashton, P. (2009). Grasses of the British Isles. Botanical Society of the British Isles, London.
Estep, M. C., McKain, M. R., Vela Diaz, D., Zhong, J., Hodge, J. G., Hodkinson, T. R., Layton, D. J., Malcomber, S. T., Pasquet, R. & Kellogg, E. A. (2014). Allopolyploidy, diversification, and the Miocene grassland expansion. Proceedings of the National Academy of Sciences of the United States of America 111, 15149–15154.
Gibson, D. J. (2009). Grasses and Grassland Ecology. Oxford University Press, Oxford.
Hibdige, S.G.S., Raimondeau, P., Christin, P.-A. and Dnning, L.T. (2021), Widespread lateral gene transfer among grasses. New Phytol. https://doi.org/10.1111/nph.17328
Holm, LeRoy G.; Plocknett, Donald L.; Pancho, Juan V.; Herberger, James P. 1977. The world's worst weeds: distribution and biology. Honolulu, HI: University Press of Hawaii. 609 p.
Linder, H.P., Lehmann, C.E., Archibald, S., Osborne, C.P., & Richardson, D.M. (2018). Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews, 93.
Magnusson, Borgthor & Magnússon, Sigurður & Ólafsson, Erling & Sigurdsson, Bjarni. (2014). Plant colonization, succession and ecosystem development on Surtsey with reference to neighbouring islands. Biogeosciences. 11. 5521-5537. 10.5194/bg-11-5521-2014.
Meyer, Susan & Nelson, David & Carlson, Stephanie. (2004). Ecological Genetics of Vernalization Response in Bromus tectorum L. (Poaceae). Annals of botany. 93. 653-63. 10.1093/aob/mch088.
Moray, C., Hua, X. & Bromham, L. Salt tolerance is evolutionarily labile in a diverse set of angiosperm families. BMC Evol Biol 15, 90 (2015). https://doi.org/10.1186/s12862-015-0379-0
No comments:
Post a Comment